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Abstract

We present a new numerical self-consistent mean field approach in order to investigate poly-disperse polymer brushes dissolved in solvent. In
this new method, the polymer segments are contained in a tube filled with solvent, which allow the realization of several configuration of the
chain. The tube conformation is developed on a lattice using Kuhn segment, such that the volume of the polymer chain is the same with the one
measured experimentally. In order to deal with the depletion layer observed in the volume fraction profile in previous theoretical investigations
and obtain more brush-like conformations at high enough concentrations, we introduce a new parameter (disturbed walk parameter), which
characterizes the degree of the deviation from the random walk growth. The results show a better description of the brush at high concentrations.
Close to the surface, disappearance of the depletion layer was observed. Also we have accomplished the correct description of the brush
extension.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The polymer brushes are chains anchored by one end to
a surface or an interface [1e6]. They are often formed by
adsorption from solution, i.e. by bringing a solution containing
end functionalized chains into contact with an interacting
surface. The ends can either be chemically attached (quite
high binding energy [7,8]) or physi-adsorbed [9e11]. The
adsorbing, functional end could be a reactive group or the
immiscible block of a copolymer [12e19]. Strong overlap
among neighboring chains is observed once the distance
between grafted points is small compared to the macromolec-
ular chain dimensions. Hence, the chains deform and stretch in
the direction perpendicular to the interface.

The numerical self-consistent field theory on a lattice is
a powerful method that can describe well polymer brushes
[20e23]. The growth of the polymer chain on a lattice allows
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us to reduce the number of chain conformations while the
introduction of the Boltzmann factor (stiffness) [26e30]
promotes the more realistic ones. But still the possible config-
urations give some variations from the volume fraction profile
obtained experimentally, especially near the surface. Moreover
the good estimation of the total polymer volume fraction in
each point of the lattice is not consisted of realistic enough
conformations. In the case of numerical self-consistent field
(nSCF) methods where the stiffness is introduced through
the size of the lattice site (Kuhn segment) the site is full of
polymer indicating overestimated density. On the other hand
in earlier methods, where the segment density is considered
correctly the polymer configuration is limited by the lattice.
As a result even though we might obtain satisfactory results
in the total volume fraction in a certain point of the solution
we cannot have clear estimate about the contribution of each
conformation. In order to take advantage of the lattice approx-
imation and also overcome some of its restrictions, we have
developed a new approach that permits polymer chain to
move in continuum space which is contained in a tube. The
tube is a chain of cubic sites, set on a cube lattice. They
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contain polymer segments surrounded by solvent. In this way
we can estimate in a more efficient way the contribution to the
total volume fraction of each polymer configuration with
important statistical weight.

In this work we mainly present the new nSCF method. In
Section 2 we give the theoretical formulation and mapping
of a real chain on the lattice. In Section 3 we test and compare
our new method to predictions from previous nSCF and results
from neutron reflectivity (NR) experiments [24,25]. Finally, in
Section 5 we end our presentation with conclusions and
proposals for future studies.

2. The block self-consistent field model

2.1. Theoretical formulation

We consider a three-dimensional (xyz) lattice of simple
structure (usually cubic). The size of each cubic lattice site
is equal to the size of a Kuhn (statistical) segment. Each
polymeric segment is calculated using the Flory segment
introduced in our previous nSCF method [29,30], which is
smaller than the Kuhn segment. Hence, in this approach, in
the case of polymeric solutions each lattice site contains
both polymer and solvent. In this method we can find sites
fully occupied by solvent named as solvent blocks. Then,
the sites occupied by both polymer and solvent are named
as polymer blocks. The macromolecular chain placed on the
lattice is the block chain (i.e. a collection of polymer blocks)
which contains the polymer chain. In this way the polymer
chain is developed in semi-continuum space, since the I, L
and V conformations of three successive lattice sites intro-
duced in our previous nSCF method restricts only the block
chain. We will refer to this new method as block-nSCF (or
bnSCF).

The substrate is placed parallel to the xy-plane; the resulting
lattice layers of the block chain (planes parallel to the surface)
are numbered consecutively, starting from the layer next to the
surface (z¼ 1) and ending at a layer (z¼M ) where the pres-
ence of the substrate has negligible effect. Each layer is one
lattice site thick and contains L lattice sites. Each lattice site
has Z neighboring sites, a fraction l0 of which lie in the
same layer and a fraction l1 of which lie in each of the adja-
cent layers. The coordination number (Z ) reflects the point
symmetries characterizing the lattice (Z¼ 6 for cubic;
l0¼ 4/6 and l1¼ 1/6). In order to describe a constant volume
system on the lattice, each lattice site must be occupied by ex-
actly one block (polymer or empty solvent block). The block
chain is represented by ri connected polymer blocks, num-
bered s¼ 1,2,., ri. The index i is adopted to denote the
type of the molecule. An additional index j is used in order
to account for the polydispersity. Thus, chains appear with
several sizes, ri

j , where j varies from minimum to a maximum
value. In order to specify the segment conformation inside the
block, we use the symbol sc, sc¼ 1,2,., numsc, where numsc

is the number of the possible configurations inside the block.
One or more sc conformations may belong to same segment
group (sg) of conformations sg¼ I or L (the V conformations
are contained in the L group). In Scheme 1 we present the
possible conformations inside a polymer block.

As shown in Scheme 1 the polymer-chain representation is
done in three-dimensional (3D) space. Hence, the realization
of the L conformation, corresponds to eight equivalent poly-
mer blocks, which are achieved by rotation of two L-shaped
block around the z-axis (see Scheme 1). In this way, although
the volume fraction depends only on z, we can also estimate
the polymer distribution and orientation in the other two axes.

Each block chain can assume a large number of possible
conformations on the lattice. The conformation (c) is defined
by specifying the layer numbers in which each of the succes-
sive block s finds itself ði:e: ch ðsf ¼ 1; z ¼ z1Þ; ðs ¼ 2; z ¼
z2Þ;.; ðs ¼ ri

j ; z ¼ zri
j
Þ Þg . The number of block chains (i,j ) in

conformation c is indicated as nc
ði;jÞ. The block chains are

distributed over the various possible configurations (sets of
conformations fnc

ði;jÞg) in the lattice with statistical weights
depending on the energy and entropy of each configuration.
The proper description of the system will be given in the
context of statistical physics by means of the grand canonical
partition function. The partition function is a sum of terms,

sc=12 sc=13 sc=14 sc=15

sc=16 sc=17

sc=1 sc=2 sc=3

sc=8

sc=4 sc=7sc=5 sc=6

sc=9 sc=10 sc=11

Scheme 1. The 17 possible polymer-segment conformations (sc) inside a cube

block. Each block is characterized by the side of the cube on which the ends of

the segment are put. We assume that the segment passes from the center of the

cube. When rotating a block around the vertical axis (counterclockwise) we

generate the next segment conformation. The V conformations start and end

at same side of the cube. The conformations sc¼ 1e3 belong to the same seg-

ment group and have sg¼ I. All the other segment conformations have sg¼ L.
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each related to a specific configuration of the block chain that
fills the lattice.

The counting of ways of arranging block chains over avail-
able sites is readily performed in a lattice model. Equilibrium
is the state at which they are distributed over the various
possible conformations in the lattice such that the free energy
(derived from the partition function) is at its minimum. We
make the assumption of replacing the sum of several terms
in the partition function by its maximum term (i.e. zero
fluctuations of the density in the (x,y) directions). In order
to obtain an expression for the number of molecules nc

ði;jÞ of
chain type i of size ri

j in conformation c, we minimize the
natural logarithm of the maximum term of the partition
function with respect to nc

ði;jÞ, subject to the full occupancy
constraint applied layerwise. We obtain the following expres-
sion [28]:

ln
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This expression for nc
ði;jÞconsists of an entropic term involving

the connectivity factor lc; a hard-core repulsion through the
Lagrance multipliers a(z); the chemical potentials mi and m�i
of component i for homogeneous phases in equilibrium with
the inhomogeneous and reference states, respectively; and
the interaction and conformation energies of the chains rela-
tive to the reference state, U�U*.

Although there are no restrictions for the angle formed
between two successive blocks, there are prohibitions which
deal with the polymer-chain continuity. When no continuity
is succeeded in a pair of successive blocks, the energy of the
equivalent bond of the block chain is infinity (for example,
blocks sc¼ 1 and 2 have infinity energy no matter how we
connect these blocks). The polymer-chain growth is accom-
plished by the success of different segment conformations
and is done in continuous space. If the success of two blocks
allows the continuity of the polymer chain, the bond energy of
the block chain describes contributions from the torsion, bend-
ing and bond potential energies of the polymer segment. So in
each block many different segment conformations occur. In or-
der to avoid the introduction of many different bond energies,
we match all the segment conformations with one of the I and
L group of conformations. In this way although the formed
angles are not limited by the lattice (0�, 90� and 180�), they
are described by only two segment weighting factors (two in-
dependent variables). Each segment conformation is contained
inside the lattice site and passes from the center of the cube
block. It is produced by a certain number of monomers. We
mention that the segment of the next block must start at the
point where the segment of previous block finishes. So the
bond energy depends on li too. To each bond energy (3b) we
associate the corresponding Boltzmann factor tb¼ exp(�3b/
kBT ). In Table 1 we present the possible bond energies. As
was mentioned in our previous publication [30] it depends
on the characteristic ratio (CN). The conformational energy
is described as

US�U�S
kBT

¼
X

i

X
c

nc
ði;jÞ

Xri
j

s¼1

3s;i;c� 3�i;s

kBT
: ð2Þ

It is reasonable to assume that the various polymer confor-
mations occupy different volume in the lattice site. Hence in
cases where we have great variations from the average volume,
the L conformation, which is also encaged in the same lattice
site and includes higher energy, is assumed to have bigger
volume. Obviously, we consider that an undisturbed polymer
(random walk) has these segments in such a percentage (1/6
I conformation) that the average polymer density is as those
measured experimentally.

Depending on the concentration of the polymer in the solu-
tion, the chain conformation may change. The interaction
between polymer segments and solvent segments is calculated
by the parameter c, according to the mean field approach,
using the ideas of the FloryeHuggins theory. In the context
of this theory, the interaction energy between each pair of dif-
ferent species is given by the product of the volume fraction of
each species multiplied with a parameter characteristic of the
interaction. In our case, the solution consists of only one pair
of two deferent chemical species. These are a homopolymer
and a solvent symbolized as A and B, respectively. However,
the involving interactions are more than one and in different
levels (block-chain and polymer-chain interactions). In order
to avoid the introduction of many parameters, we have
exploited a new approach in which all interactions are derived
from the basic one between polymer and solvent. We use the
symbol fb

AIðfb
ALÞ for the volume fraction of the block contain-

ing the I (L) segment conformation and the symbol fin
AIðfin

ALÞ
for the volume fraction of the polymer inside the block (or
internal volume fraction). The volume fraction of the solvent
inside the I block (L block) is fin

BIðfin
BLÞ. The total volume frac-

tion of the polymer in the solution is symbolized as fA and is
the sum of the polymer in I and L conformations (fAI and fAL,
respectively). Moreover the volume fraction of the solvent
block is fb

B and the total volume fraction of the solvent is
fB. Then the interaction energy is described as

UF�U�F
kBT

¼ 1

2

"
L
XM

z¼1
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where f�Ai and f�Bi are the volume fractions in the reference
state.

If we set the interaction (and conformational) energy to
zero in the reference state, then Eq. (3) for the inhomogeneous
state at z layer for sites filled with polymer and solvent can be
rewritten as
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Table 1

The non-zero Boltzmann factors

sc¼ 1 sc¼ 2 sc¼ 3 sc¼ 4 sc¼ 5 sc¼ 6 sc¼ 7

t1,0,�1¼ tI t2;2;0 ¼ t��I t3;3;0 ¼ t��I t4,0,�1¼ tL t5,0,�1¼ tL t6,0,�1¼ tL t7,0,�1¼ tL

t1,1,�1¼ tI t2;4;0 ¼ t�I t3;5;0 ¼ t�I t4,1,�1¼ tL t5,1,�1¼ tL t6,1,�1¼ tL t7,1,�1¼ tL

t1,1,þ1¼ tI t2;6;0 ¼ t�I t3;7;0 ¼ t�I t4;2;0 ¼ t�L t5;3;0 ¼ t�L t6;2;0 ¼ t�L t7;3;0 ¼ t�L
t1,4,þ1¼ tI t2;8;0 ¼ t�I t3;9;0 ¼ t�I t4;6;0 ¼ t�L t5;7;0 ¼ t�L t6;4;0 ¼ t�L t7;5;0 ¼ t�L
t1,5,þ1¼ tI t2;10;0 ¼ t�I t3;11;0 ¼ t�I t4,8,�1¼ tL t5,8,�1¼ tL t6,8,�1¼ tL t7,8,�1¼ tL

t1,6,þ1¼ tI t2;12;0 ¼ t�I t3;13;0 ¼ t�I t4,9,�1¼ tL t5,9,�1¼ tL t6;8;0 ¼ t�L t7,9,�1¼ tL

t1,7,þ1¼ tI t2;14;0 ¼ t�I t3;15;0 ¼ t�I t4,10,�1¼ tL t5,10,�1¼ tL t6,9,�1¼ tL t7;9;0 ¼ t�L
t1,8,�1¼ tI t4;10;0 ¼ t�L t5,11,�1¼ tL t6,10,�1¼ tL t7,10,�1¼ tL

t1,9,�1¼ tI t4,11,�1¼ tL t5;11;0 ¼ t�L t6,11,�1¼ tL t7,11,�1¼ tL

t1,10,�1¼ tI t4;14;0 ¼ t�L t5;15;0 ¼ t�L t6;12;0 ¼ t�L t7;13;0 ¼ t�L
t1,11,�1¼ tI t4,16,�1¼ tL t5,16,�1¼ tL t6,16,�1¼ tL t7,16,�1¼ tL

t1,16,�1¼ tI

t1,17,þ1¼ tI

sc¼ 8 sc¼ 9 sc¼ 10 sc¼ 11 sc¼ 12 sc¼ 13 sc¼ 14

t8,1,þ1¼ tL t9,1,þ1¼ tL t10,1,þ1¼ tL t11,1,þ1¼ tL t12;2;0 ¼ t�L t13;3;0 ¼ t�L t14;2;0 ¼ t�L
t8;2;0 ¼ t�L t9;3;0 ¼ t�L t10;2;0 ¼ t�L t11;3;0 ¼ t�L t12;6;0 ¼ t�L t13;7;0 ¼ t�L t14;4;0 ¼ t�L
t8,4,þ1¼ tL t9,4,þ1¼ tL t10;4;0 ¼ t�L t11,4,þ1¼ tL t12;10;0 ¼ t�L t13;11;0 ¼ t�L t14;8;0 ¼ t�L
t8,5,þ1¼ tL t9,5,þ1¼ tL t10,4,þ1¼ tL t11;5;0 ¼ t�L t12;14;0 ¼ t�L t13;15;0 ¼ t�L t14;12;0 ¼ t�L
t8;6;0 ¼ t�L t9,6,þ1¼ tL t10,5,þ1¼ tL t11,5,þ1¼ tL

t8,6,þ1¼ tL t9;7;0 ¼ t�L t10,6,þ1¼ tL t11,6,þ1¼ tL

t8,7,þ1¼ tL t9,7,þ1¼ tL t10,7,þ1¼ tL t11,7,þ1¼ tL

t8;10;0 ¼ t�L t9;11;0 ¼ t�L t10;8;0 ¼ t�L t11;9;0 ¼ t�L
t8;14;0 ¼ t�L t9;15;0 ¼ t�L t10;12;0 ¼ t�L t11;13;0 ¼ t�L
t8,17,þ1¼ tL t9,17,þ1¼ tL t10,17,þ1¼ tL t11,17,þ1¼ tL

sc¼ 15 sc¼ 16 sc¼ 17

t15;3;0 ¼ t�L t16,1,þ1¼ tL t17,1,�1¼ tL

t15;5;0 ¼ t�L t16,4,þ1¼ tL t17,8,�1¼ tL

t15;9;0 ¼ t�L t16,5,þ1¼ tL t17,9,�1¼ tL

t15;13;0 ¼ t�L t16,6,þ1¼ tL t17,10,�1¼ tL

t16;7;þ1 ¼ tL t17,11,�1¼ tL

t16,17,þ1¼ tL t17,16,�1¼ tL

For the surface we give the index 0. The chain can start with the first, fourth, fifth, sixth and seventh blocks. The factors t�sg and t��sg take different values depending

on the kind of the chain walk (random or disturbed). When the growth follows the random walk: t��I ¼ ð2=4ÞtI ; t�I ¼ ð1=4ÞtI ; t�L ¼ ð1=4ÞtL. While in the

disturbed walk: t��I ¼ dð2=4ÞtI ; t�I ¼ dð1=4ÞtI ; t�L ¼ dð1=4ÞtL (d> 1). The solvent (numscþ 1) can follow after every block and from every side of the cube

(every li). The obtained bond energy for this case is tsg.
The quantities between the z-dependent volume fractions
are the corresponding c parameters for the involving lattice
interactions. More details are given in Section 2.3.

The system can be described in a mean field self-consistent
approximation in terms of a segment potential ub(z) depending
only on the kind of the segment (b¼AI, AL and B here). In
our case we have three different blocks. The two polymer
blocks (I and L) and the solvent block. Generally, it stands

ubðzÞ ¼ kTaðzÞ þ vU=L

vfbðzÞ
þ uref

b ð5Þ
We introduce the segment weighting factor, GðzÞh
e�ubðzÞ=kT . The weight G(z) is proportional to the probability
of finding a segment in layer z of the interfacial system, rela-
tive to finding it in the bulk. Then the statistical weight for
finding an end of an s-segment long chain in layer z, G(z;s),
is defined. We can find a recursion relation, which is solved
once we know a proper initial condition. For the forward prop-
agation the recursion relation has the following expression
(s> 1):

G
�
z; ssc

��1�¼ G
�
z; ssg

�
hGðz; s� 1j1Þi ð6Þ
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where hGðz; s� 1j1Þi

h
Xnumsc

ssc¼1

Xnumsc

ðs�1Þsc¼1

Xþ1

i¼�1

litssc;ðs�1Þsc;i
G
�
zþ i; ðs� 1Þsc

��1� ð60Þ

For the backward propagation (s< r):

G
�
z; ssc

��r�¼ G
�
z; ssg

�
hGðz; s� 1jrÞi ð7Þ

where hGðz; s� 1jrÞi

h
Xnumsc
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Xþ1
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litssc;ðs�1Þsc;i
G
�
zþ i; ðs� 1Þsc

��r� ð70Þ

All segment conformations characterized as I have the
segment weighting factor G(z,sI) and the volume fraction
fb

AI . Also all L and V conformations have the weighting factor
G(z,sL) and the volume fraction fb

AL.
When s¼ 1 or s¼ r then (s�1)sc can either take the value

0 in order to describe the surface (forward propagation) or the
value (numscþ 1) for the solvent after the last polymer seg-
ment (backward propagation). Of course for the grafted chains
G(z,1sg/1)¼G(z,1sg)dz,1. For the solvent case, we only use the
weight G(z).

Then by means of a composition law we find the volume
fractions. For the grafted chains:

fðzÞ ¼
Xrmax

k¼1

Xk

s¼1

Xnumsc

ssc¼1

fin
Asg

�
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�
z; ssg

��1
tsgðCkGðz; sscj1ÞGðz; sscjkÞÞ



ð8Þ

where the factor G(z,ssg)�1tsg
�1 is set in order to take care of

the double counting.
By properly rearranging the order of the summation we get

fðzÞ ¼
Xrmax

s¼1

Xnumsc

ssc¼1

fin
Asg

	
G
�
z; ssg

��1
tsgðGðz; sscj1Þ½CsGðz; sscjsÞ

þGðz; ssc=fk � sþ 1gÞ�Þ



ð9Þ

where Cs ¼ s
ns

ntotal

1P
z

Gðz; s=1Þ ð10Þ

and s is the surface density.
The solvent’s volume fraction is

fðzÞ ¼ C1GðzÞ ð11Þ

where C1 ¼
M� rsP

z

GðzÞ ð12Þ

M is the number of the layers.

2.2. Brush regime: disturbed walk

The polymer-chain growth in a brush is restricted by the
presence of the other chains due to high polymer
concentration. In the brush case, we have a definite deviation
from the random walk. The chain growth has been compared
to the movement of a charged particle in a force field [3]. In
the brush regime, it is expected an increase of the possibilities
to move perpendicular to the substrate. Hence in the present
work, our objective is to give a different (larger) weight to
the more uniformly stretched conformations that are likely
to happen in this region.

When two cube blocks lie in the same layer, there are 16
ways to stand side by side. For the cases where a pair of blocks
can allow the chain continuity e.g. the blocks with sc¼ 4 and
2, only one placement can permit the polymer-chain develop-
ment. The block with sc¼ 4 is surrounded by ð4=6Þfb

Asc¼2

blocks that lie in the same layer. Because of the 3-D represen-
tation of the polymer-segment conformation, only ð1=6Þfb

Asc¼2

are useful for the polymer growth. So in order to describe the
random walk, the Boltzmann factor must get the value (1/4)tb,
if li¼ l0. In this way we have l0ð1=4Þtbfb

Asc
¼ ð1=6Þtbfb

Asc
.

The introduction of the polymer preference to stretch uni-
formly perpendicular to surface is done by multiplying the
Boltzmann factor for all the possible block bonds parallel to
the surface we another factor d. In our example, instead of hav-
ing t4,2,0¼ (1/4)tL, we set t4,2,0¼ d(1/4)tL. The parameter
d is a measure of the deviation of the random walk and has
no units. When d¼ 1 we have a random walk development.

The product of all li gives the number of possible configu-
rations of the block chain on the lattice divided with the
configurations in bulk (Zr�1 number of configurations). Let
us assume that the Boltzmann factor (tb) is constant for both
versions of chain development. This means that for disturbed
walk stands: l0dð1=4Þ � tbfb

Asc
, while for random walk:

l0ð1=4Þ � tbfb
Asc

. As mentioned before, the 3-D representa-
tion on a cube lattice is described by six different li. Each li

has the value 1/6. When the polymer chooses to ‘‘move’’
parallel to the surface in the disturbed walk stands: l00 ¼
l0dð1=4Þ ¼ ðd=6Þ; while in the random walk stands: l00 ¼
l0ð1=4Þ ¼ ð1=6Þ, describing that the previous block is in con-
tact with only the one side of the cube lattice site. So in the
disturbed walk one step parallel to the surface is equivalent
to (d/6)� 6¼ d combinations of polymer (imaginary) place-
ment, while in random walk describes only one (real) place-
ment. As a result the chain can ‘‘pay’’ easier the entropic
cost and this favor the configuration perpendicular to the sur-
face. If chains do not have the entropic benefit, they have to
take conformations that distribute them unevenly parallel to
the surface. Those flatten configurations are obtained when
the chains take a mushroom shape (Scheme 2a). The reason
is that chains that try to flatten on the first layer have to take
the shape of a worm (loops parallel to the surface and trains
developed along the surface). Because of the surface obstacle,
the polymer cannot develop freely and usually such conforma-
tions require an adsorptive surface [6]. As a result, they stretch
at the first one or two layers and then they distribute parallel to
the surface. But at high concentrations such configurations are
unlike to happen. In the brush case, where hR2i1=2 �

ffiffiffiffiffiffiffiffiffiffiffi
1=ps

p
,

the polymer conformation is mainly determined by the
enthalpic factor. So it is more possible for the chains to take
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uniformly stretched configurations that are shown in Scheme
2b. As the more flattened conformations are reduced, their
place is taken by more realistic brush conformations.

Conclusively in the random walk growth, chains that take
conformations like in Schemes 2a and 3a would be very stable
(as more stretched conformations also contribute to the total
polymer volume fraction in smaller proportion). The reduction
of contacts between polymer and solvent in high concen-
trations is done by squeezing only the flatten part of the
mushroom-like chain. The ‘‘stem’’ of the mushroom configu-
rations is already too elongated. As a result, we get overesti-
mated extension of the brush height. In the same case,

(a)

(b)

Scheme 2. Schematic representation of the polymer brush for the cases of (a)

random walk (mushroom-like conformations) and (b) disturbed walk (brush-

like conformations) growth. The appearance of the depletion layer in the

case of random walk is attributed to the tendency of the chain to reduce the

free energy by distributing its main part in the first layers after the first one

(mushroom shape). This behavior is mainly guided by the entropic factor.

By giving more weight to more uniformly stretched distributions perpendicular

to the surface we obtain more brush-like configurations as we observe the

disappearance of the depletion layer.
conformations like in Schemes 2b and 3b would have much
less enthalpic cost but this could not compensate the entropic
reduction. So in the random walk case the conformation de-
picted in Scheme 3a is very preferable in a wide range of
concentrations. On the other hand in the disturbed walk the
flatten configurations that resemble Scheme 3a obtain high
volume fraction, that is substantially the total polymer volume
fraction ðl00 ¼ d=6Þ. So at high concentrations these configura-
tions are very unfavorable. In the same time, the conforma-
tions like the one in Scheme 3b distribute the chains in
more layers and have an enthalpic advantage. As in the dis-
turbed walk the chains are represented substantially by one
type of conformations (3a or 3b), at high concentrations they
prefer the 3b type. When surface density reduces the disturbed
walk causes the chains to flatten in first layers and shrink in-
tensely. That is why at low surface densities (low concentra-
tions) we prefer to describe the chain’s growth using the
random walk. Besides in low concentrations there is enough
space for the random walk growth. The version of the new
model using the random walk (d¼ 1) is called (rw) bnSCF
and gives more weight to conformations that resemble a mush-
room (Schemes 2a and 3a). In Table 1 we present Boltzmann
factors for both versions.

2.3. Phase separation, cc

The determination of the critical value for the interaction
parameter, where phase separation occurs, is done using the
FloryeHuggins theory. In our model, the interactions occur
between the polymer segment and the solvent, which sur-
rounds it inside each block (internal energy) but also between
polymer blocks and solvent blocks.

Let us assume the existence of a second traditional lattice
(FloryeHuggins theory) on which we put only polymer seg-
ments and solvent segments of the same volume. Then each
segment interacts with another solvent molecule with the inter-
action parameter cAB. We can estimate the interaction

(a) (b)

Scheme 3. Characteristic types of chain conformations on a cube lattice. The

position of each segment depends only on the distance from the surface (z). So

the existence of one segment parallel to the surface represents all the possible

placements in this parallel level. (a) Flatten conformations, distributing the

polymer parallel to the surface. (b) Stretched conformations, with more

uniform distribution in the z-axis.
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parameters on the block lattice by counting the number of con-
tacts on a traditional lattice. If the average polymer volume
fraction inside the block is f

in
A then each polymer block inter-

acts with another solvent block with an interaction parameter
f

in
AcAB, since the total number of contacts between polymer

and solvent in the two blocks is counted f
in
A,1. Moreover

each polymer segment interacts with the surrounding solvent
molecules in every polymer block with an interaction param-
eter f

in
AcABf

in
B.

We note that in equilibrium the true volume fraction of the
polymer ðfb

Af
in
AÞ is considered. Nevertheless f

in
A sets a limit in

the higher value of the polymer volume fraction inside the
solution. In most cases of good solution (including the ones
studied in this work) this is a satisfactory limit as the total
polymer volume fraction does not exceed the f

in
A. The reason

is that the maximum is defined such as a well-diluted segment
would be in I conformation and fully surrounded by solvent
molecules (for the internal volume fraction of L conformation
see Section 2.4, Eq. (26)). If the volume of a monomer is a3

p

and the volume of a solvent molecule is a3
s , then the cube

that contains the segment and the appropriate number of sol-
vent molecules has length approximately lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4apas þ a2

p

q
.

This is usually higher than the Flory-segment length [28,29]
and close to the Kuhn segment. Instead of determining the lat-
tice site size as another parameter we defined it from the Kuhn
segment. For cases that a higher maximum in the internal vol-
ume fraction is needed, these are situations where segments
being very close have important statistical weight, we just
have to put more segments in the same block. If for example
two segments are together then the internal volume fraction
is double and the interaction parameter is equal to 2fin

AcAB.
This consequence of the variable mean field is reasonable
since cases of crowded blocks correspond to situations of
worse solvency.

The Gibbs free energy for a polymer chain showing no
density fluctuations is given by the following equation [32]:

DGmix

RTN
¼ fb

B ln fb
Bþ

fb
A

x
ln fb

Aþfb
Af

in

AcABfb
Bþfb

Af
in

AcABf
in

B fb
A

ð13Þ

N is the total number blocks (solvent and polymer), x is the
degree of polymerization and R¼ kBNA (NA is the Avogadro’s
number).

Then the chemical potential is obtained as

mB� m�B
RT

¼ DGmix

RTN
þfb

A

dðDGmix=RTNÞ
dfb

B

ð14Þ

We calculate the critical value (cc) of the interaction
parameter by solving the following system of two equations:

dmB

dfb
B

¼ 0;
d2mB

dfb2

B

¼ 0 ð15Þ
The critical value is given as cc ¼
1

2
�
f

in

A �f
in

Af
in

B

� ð16Þ

If the polymer block is only filled with polymer then f
in
A ¼

1 and f
in
B ¼ 0. In this case cc¼ 0.5 and the bnSCF collapses to

the traditional nSCF.
If we call cb the interaction parameter in our bnSCF

method, then the relation with the corresponding parameter
cFH in the traditional nSCF is

cFH ¼ 0:5
cb

cc

: ð17Þ

The cc obtained by this approach is usually higher than the
one achieved introducing all the parameters listed below.
Hence, the corresponding cFH may have a little higher value.
This is owed to the introduction of the polymer stiffness and
the segment density fluctuation. Also the preference to move
perpendicular to the surface causes chain to be more sensitive
in the c changes. An analogue deviation occur in the nSCF
where polymer stiffness influences the entropic change (less
conformations are possible in the inhomogeneous phase).

2.4. Mapping real polymers onto the lattice

The lattice size (l ) is given by the length of Kuhn segment
(lK) and so it is related to stiffness parameter CN by the
following expression:

l¼ lK ¼ lb

CN

sin
�

qb

2

� ð18Þ

where the mean square end-to-end distance of the chain is
given as

�
R2
�
¼ CNnbl2

b ð19Þ

lb is the bond length and qb is the bond angle along the chain
backbone and nb is the number of bonds.

The volume of the polymer segment inside the lattice site is
calculated using the approach of the Flory segment, mentioned
in previous work [28e30]. The Flory segment, of length lF, is usu-
ally shorter than the Kuhn segment. It can be defined such that
a chain will have the same maximally extended length (end-to-
end distance in all-trans conformation) and volume in the Flory
segment representation as are measured experimentally.

lF ¼
"

nmMm

NArnblbsin
�

qb

2

�
#1=2

ð20Þ

where nm is the degree of polymerization, Mm is the monomer
molecular weight, r the mass density of the polymer and NA is
Avogadro’s number, nb is the number of chemical bonds per
chain. According to this approximation, the average polymer
volume fraction inside a lattice site is
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f
in

A ¼
nmMm

NArnblbsin
�

qb

2

� 1

l2
ð21Þ

The number of monomers per block (nmpb) is given by the
equation:

nmpb ¼ nmpF

l

lf

ð22Þ

where nmpF is the number of monomers per Flory segment

nmpF ¼
NArl3

F

Mm

ð23Þ

In the cases of big monomers (usually those that substitute
the hydrogen with a bigger unit) there are no important varia-
tions from the average volume fraction ðfin

AÞ. Nevertheless
rod-like monomers such as polyethylene may occupy much
different space depending on the conformation they take.
Also in cases of hydrophobic hydration in some areas of the
solution, the polymer may obtain less volume conformations
[34]. The part of the polymer that is surrounded by solvent
molecules is stretched and so takes the I conformaion. Under
these circumstances the volume of the I segment conformation
is smaller than the L segment volume. The cross-section for
the I conformation is usually set around the a2

p,

where a3
p ¼

Mm

NAr
ðmonomer’s volumeÞ: ð24Þ

A more accurate estimation depends on the polymer’s
geometry.

So the volume fraction of the I conformation is

fin
AI ¼

a2
pl

l3
ð25Þ

If we consider a random walk for an undisturbed polymer
chain (the condition of the polymer when experimental data
are collected) then

fin
A ¼

fin
AI þ 5fin

AL

6
¼> fin

AL ¼
6fin

A �fin
AI

5
: ð26Þ

In most cases the Kuhn segment is almost twice the Flory
segment. Therefore usually a block contains only one angle
formed by almost two Flory segments [29,30]. The bond ener-
gies are determined from the characteristic ratios by matching
the mean-square end-to-end distance between a real chain and
a chain of correlated Flory segments. The characteristic ratio
of the correlated Flory chain ðCF

NÞ is

CF
N ¼

CNnbl2
b�

r� 1
�
l2
F

ð27Þ

in which CF
N is the characteristic ratio of the correlated Flory

chain.
Assuming that back-folding (V) inside the block conforma-

tions is a special case of L conformation, the characteristic
ratio of the Flory chain is related to the bond statistical weights
by

CF
N ¼ 1þ tI

2tL

¼ 1þ 1

2
eð3L�3IÞ=kT ð28Þ

Since the characteristic ratio depends only on the difference
between the energies (3L� 3I), one of them (in our case 3I)
may be set arbitrarily to zero. So the bending energy 3L can
be estimated once the characteristic ratio CN is known.

tL ¼
1

2
�
CF

N� 1
� ð280Þ

3. System studied

3.1. PP in a good solvent

Isotactic polypropylene is a very well-studied polymer. It
was previously studied by nSCF method [29] for the case of
a melt. Because the theoretical results were considered very
satisfactory and we use them in order to check our new
method. Only this time we take the PP as being solved by
a good solvent.

It is known that the length of the CeC bond is 1.54 Å and
the angle between two consecutive CeC bonds is 112�. In
Ref. [31] we find expressions for the density as a function of
the pressure and temperature. In the results we present here
we have assumed that the temperature of our system is
220 �C, which is higher than the melting point [29,31].

For the nSCF the characteristic ratio (CN) is 5.7 [29].
For this CN, Eqs. (27) and (28) give a bending energy
3L¼ 0.40kBT. The Flory interaction parameter between the
PP and the good solvent is c¼ 0.1. For PP, the Flory segment
length from Eq. (20) is lF¼ 6.06 Å, and the number of
chemical (propylene) monomers in a Flory segment is 2.37.

In the bnSCF the characteristic ratio (CN) is set 5.8. So
the bending energy is (Eqs. (27) and (28)) 3L¼ 0.44kBT. The
Kuhn statistical segment from Eq. (18) is lK¼ 10.77 Å. The
number of monomers per block is 4.21. The interaction param-
eter between the PP and the good solvent is c¼ 0.95. The
corresponding FloryeHuggins parameter for cc¼ 5.52 is cal-
culated from Eq. (17) as 0.086. We assume that the polymer
segment inside the block occupies the same average volume
in all conformations. So we set fin

AI ¼ fin
AL ¼ f

in
A ¼ 0:3. The

parameter for the deviation from random walk, d, is 3.
The PP was also studied by the random walk version (rw)

bnSCF (d¼ 1) that allows the random walk development
of the chain. In this approach, the bnSCF model can also de-
scribe the experimental results (i.e. practically, without intro-
ducing the disturbed walk parameter d). But in this case
a depletion layer appears and the predictions are very similar
to the results from the old nSCF. The CN is set 5.2 and the
bending energy from Eqs. (27) and (28) is 3L¼ 0.17kBT.
The Kuhn statistical segment from Eq. (18) is lK¼ 9.65 Å.
The number of monomers per block is 3.77. The interaction
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parameter between the PP and the good solvent is c¼ 0.85.
The corresponding FloryeHuggins parameter between the
PP and the good solvent for cc¼ 3.56 is calculated as
c¼ 0.12. Again we assume that the polymer segment inside
the block occupies the same average volume in all conforma-
tions fin

AI ¼ fin
AL ¼ f

in
A ¼ 0:37.

3.2. PEO in good solvent

In order to compare our method with experiment we have
also investigated a system that has been studied with NR by
Currie et al. [24]. The system is already studied with nSCF
in our recent work [30]. It consists of diblock copolymer poly-
styreneepoly(ethyl oxide) (PSePEO). The block copolymers
were dissolved in chloroform and deposited on a airewater
interface. The smaller PS blocks anchor the copolymers to
the interface. This system has been treated as a system of
grafted chains.

Since the bonds CeO and CeC do not have the same
length we map the PEO monomer onto an equivalent ‘poly-
ethylene trimmer’. This equivalent structure contains only
single bonds, each with bond length of lb¼ 1.96 Å and angle
between the two successive bonds, qb, at 131�.

In the results produced by means of the nSCF method,
we have assumed that the temperature of our system is
25 �C, which is the temperature at which experimental data
[24] were collected. The mass density is 1.10 g/cm3; found in
Ref. [31]. The Flory segment estimated (Eq. (20)) as
lF¼ 4.315 Å, therefore the number of chemical (ethyl oxide)
monomers in a Flory segment is 1.21. In previous work [30],
the CN was estimated to have low value, because the c for
the interaction between polymer and solvent was also low
(c¼ 0.12). It was based on the choice (c¼ 0) for the same
parameter presented in Ref. [24]. We correct our previous ap-
proach by setting CN¼ 5 and c¼ 0.4 [6]. For this CN, and
for lb¼ 1.96 Å Eqs. (27) and (28) give 3L¼ 1.09kBT. The Flory
interaction parameter between the PEO and interface is c¼�1
(the minus sign shows that there is a preference for the surface).

In the bnSCF the value of the characteristic ratio (CN) is set
3.8. So we calculate the bending energy as 3L¼ 0.58kBT. This
value of CN is very close to the one given by the literature
(CN¼ 4) [32]. The Kuhn statistical segment from Eq. (18)
is lK¼ 8.2 Å. The number of monomers per block is 2.3.
The interaction parameter between the PP and the good
solvent is c¼ 2.7. The corresponding FloryeHuggins param-
eter for cc¼ 6.22 is calculated through Eq. (17) as 0.21. The
interaction parameter between the PEO and interface for
the new method is �12.7 and the corresponding Florye
Huggins parameter estimated by Eq. (17), is �1. We assume
that the volume fraction of the I conformation is lower than the
volume fraction of the L conformation: fin

AI ¼ 0:24; fin
AL ¼

0:28; f
in
A ¼ 0:27. This is justified by the fact that the mono-

mer (in the trans conformation) has 0.81 Å width and 3.56 Å
length. The assumption of density fluctuations is defended
by the resulting volume fraction profile. Also the parameter
for the deviation from random walk, d, is 3.
3.3. PS in good solvent

In addition we have compared our method with experimen-
tal results from a system studied with NR by Kent et al. [25].
The system investigated consisted of Langmuir monolayers
of highly asymmetric poly(dimethylsiloxane)epolystyrene
(PDMSePS) diblock copolymers on the interface of aire
ethylbenzoate (EB). This is a system with the smaller PDMS
blocks (physically) anchored to the interface creating
Langmuir monolayers. In our computational model we treat
this system as a system of grafted chains, as the anchoring
energies are very large [30].

In the results produced by theoretical methods, we have
assumed that the temperature of our system is 25 �C, which
is the temperature at which experimental data were collected.
We use a mass density of 1.0525 g/cm3; a value derived from
expressions, of the mass density as a function of the pressure
and temperature, found in Ref. [31]. The Flory segment
estimated as lF¼ 8.016 Å, therefore the number of chemical
(isoprene) monomers in a Flory segment is 3.14.

The value used in nSCF method for the characteristic ratio,
CN, of the equivalent trimer was estimated to be 8.0 [30]. For
this CN, the bending energy is 3L¼ 0.538kBT. The interaction
parameter between the PS and the good solvent is c¼ 0.15.
We assume that the interaction energy with the surface is zero.

The characteristic ratio in bnSCF method, CN, is close to
value that was chosen for nSCF and is set 8.5. For this CN, the
bending energy is 3L¼ 0.663kBT. The Kuhn statistical segment
for length of the CeC bond 1.54 Å and angle between two con-
secutive CeC bonds 112� is given from Eq. (18) as lK¼ 15.79 Å.
The number of monomers per block is 6.18. The interaction
parameter between the PS and the good solvent is c¼ 1.04.
The corresponding FloryeHuggins parameter for cc¼ 7.52 is
calculated from Eq. (17) as 0.07. We assume that the polymer
segment inside the block occupies the same average volume in
all conformations. So we set fin

AI ¼fin
AL ¼ f

in
A ¼ 0:25. The results

for both versions (random and disturbed walk) were taken for the
same parameters. The disturbed walk is described with a value
for parameter d equal to 2.5.

4. Results and discussion

In Fig. 1 we present results for surface (grafting) density
s¼ 0.1 nm�2. Our investigation includes one monodisperse
system with 1422 monomers and three bimodal systems where
the size of the long chains and the total surface density is kept
constant. For PP of this molecular weight and grafting density,
polymeric brushes are present. The solid line shows the results
from the bnSCF compared to the predictions (dash and dotted)
of the nSCF. The main difference between the two results is
that the new method does not depict any depletion layer. We
consider it as an improvement compared to previous nSCF
methods since no experimental results seem to agree with the
appearance of such layer near the surface. This behavior of the
bnSCF was attributed to the variation from the random walk
that was introduced. As mentioned in Section 2.2, by building
a chain with specific bond energies, we increase the uniformly
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Fig. 1. Volume fraction profiles of PP chains as a function of the distance from the interface for one monodisperse and three bimodal systems. The dashed-dotted

curve describes the prediction of nSCF model and the solid curve describes the prediction of bnSCF model. The systems studied are (a) 1422 monomers,

s¼ 1� 10�1 chains/nm2; (b) 1422-711 monomers, s¼ 1� 10�1 chains/nm2, 60% short chains; (c) 1422-711 monomers, s¼ 1� 10�1 chains/nm2, 80% short

chains. (d) 1422-350 monomers, s¼ 1� 10�1 chains/nm2, 60% short chains.
stretched configurations perpendicular to the surface (Scheme
2b). In this way mushroom-like conformations that distribute
the chain in layers close to surface (Scheme 2a) have negligi-
ble contribution. The tendency to vanish the depletion layer
with increasing surface density is also supported by investiga-
tions made with molecular simulations [33].

When the chains are intensely stretched using the disturbed
walk development a reduction in the polymer concentration
has much influence to the polymer configuration. In the
bimodal distributions of Fig. 1 and also in Fig. 2 we present
such cases. It is observed that the brushes shrink more in the
new method compared to the old nSCF, where the conforma-
tions are more stable and less affected by the surface density.
As will be shown in next paragraph this is in agreement with
the experiment. The reason for this behavior is that we indi-
rectly give more weight to the enthalpic factor. In the old
method the entropic factor has been considered with more
weight, which justifies their stability. This explanation is sup-
ported by the fact that when the chain growth through the
block model follows the random walk approximation the
shrinkage follows the old nSCF predictions. This is shown
in Fig. 3 where we present results from the (rw) bnSCF. The
polymer chain is mainly distributed to layers far from the
surface and not ‘‘uniformly’’ (mushroom conformation) as
done with the disturbed walk version. So the brush without
having to fill the gap of the depletion layer, accomplishes
the same extension with CN¼ 5.2. The same CN that gives
good results for the brush region and the disturbed walk
growth, also gives excellent agreement with the nSCF for
lower surface densities using the random walk growth. This
is shown for the case of PS solution in Fig. 6.

We now concentrate in the investigation of the PEO system.
Although the old nSCF does not agree with the degree of the
shrinkage, the experiment seems to follow the predictions of
the bnSCF at least at high enough concentrations (brush
region). In Figs. 4 and 5 we present results of bimodal brushes
studied with NR. These results are also compared with the old
method. In Fig. 4 the PEO brush shrinkage is more intense
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(bigger divergence from traditional nSCF) compared to the PS
brush because the deviation from the random walk is bigger
(dPEO¼ 3, dPS¼ 2.5).

In the study of the PEO system with the new approach
assuming volume fluctuation for the I and L conformations,
we observe that the first parabola of the bimodal profile be-
came smaller taking lower values in the volume fraction pro-
file. According to this estimation, the PEO monomer is rod
like and when it is surrounded by water molecules, it is enc-
aged in a smaller volume [34]. No important changes were
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Fig. 3. Volume fraction profiles of PP chains as a function of the distance from

the interface for two cases of monodisperse distribution. The surface density is

s¼ 1� 10�1 chains/nm2 and 0.5� 10�1 chains/nm2. The number of mono-

mers is 1422. The stiffness of the chain for (rw) bnSCF method is 5.2 and it

is smaller compared to the case where a variation of the random walk was

introduced. The dashed-dotted curve describes the prediction of nSCF model

and the solid curve describes the prediction of the (rw) bnSCF model. We

observe that the results from the random walk version follow the predictions

of the nSCF. The degree of shrinkage predicted by the new method is almost

the same with the degree obtained from the old nSCF.
observed in the extension of the brush comparing to the case
of constant volume for I and L segment conformations. This
is attributed to the fact that at long distances from the surface
the polymer volume fraction is low. Thereby the preference of
the I block (in all three directions) in order to satisfy the en-
thalpic factor is strong only in small region near the surface.
If we want to describe this solution using the traditional
nSCF method, we have to consider a stiffer polymer than
the predictions of the literature [32] (we set CN¼ 5 instead
of CN¼ 4) and almost a q-solvent (c¼ 0.4). In this way the
polymer likes being close to the surface and since it is stiff
it lies on the first layer. The part of the polymer on the first
layer takes a rod-like conformation. This approximation ex-
plains the sudden reduction of the volume fraction observed
in the NR experimental data. Of course if we accept that the
I conformation occupies less volume, it becomes more prefer-
able in the bnSCF method because the I block shows smaller
interaction parameter ðc ¼ fin

AIcABÞ. In this way it contributes
to the reduction of enthalpic energy. So the increase of I angles
is not succeeded only by lowering tL (when increasing CN).
As a result we have good description of the system with low
values of CN.

Finally, we study the PS system. In Fig. 6 we compare our
method with PS results from NR [25] for three cases of
bimodal distribution. It is obvious that the new method
succeeded better description near the surface while the total ex-
tension of the brush predicted with the bnSCF method agrees
with the experiment. A small deviation, compared to the old
nSCF, occurs in the volume fraction value at point where the
profile segregates in the two bimodal regions. Another choice
of parameters in order to have better agreement on this point
would slightly affect the volume fraction on the surface leaving
the volume profile qualitatively unchanged.

In order to obtain a more accurate view about the region
where the disturbed walk should be applied we have taken ad-
vantage of the experimental results for monodisperse PS layer
height. In Fig. 6 we present results of the brush height as
a function of ratio hR2i1=2=

ffiffiffiffiffiffiffiffiffiffiffi
1=ps

p
. The hR2i is given by

Eq. (19) while the quantity
ffiffiffiffiffiffiffiffiffiffiffi
1=ps

p
is characteristic of the

free space that each polymer chain occupies in a brush of sur-
face density s and gives an estimate of the radius of that sector
(Rs). We observe that as the ratio becomes greater than 2 the
disturbed walk version gives better results. The explanation of
this behavior is the following. When the distance of the grafted
points between two polymer chains (2Rs) is greater than the
double of end-to-end distance 2R (we assume RhhR2i1=2)
then chains do not interact and we do not observe the brush
phenomenon (Scheme 4a). As s increases, the grafting points
come closer. In Scheme 4b we describe the brush case where
R	 2Rs	 2R. In this case although the polymer’s conforma-
tions (described with a hemisphere) interact, some configura-
tions can still be developed with the random walk. The
flatten conformations that end in the gray region are pushed
perpendicular to the surface. So we have an extension of the
brush which is owed to the fact that some conformations are
stretched or others that follow the random walk get more
weight. But in case where 2Rs< R a chain that starts from a



649G. Kritikos, A.F. Terzis / Polymer 48 (2007) 638e651
0 40 80 120 160 200 240 280 320 360 400 440 480
0.00

0.06

0.12

0.18

0.24

0.30

(a)

σ=0.2 nm-2

V
o
l
u
m
e
 
f
r
a
c
t
i
o
n
 
o
f
 
t
h
e
 
P
E
O
 
c
h
a
i
n
s

Distance from the surface (Å)

NR
bnSCF
nSCF

NR
bnSCF
nSCF

NR
bnSCF
nSCF

0 40 80 120 160 200 240 280 320 360 400
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

(b)

σ=0.143 nm-2

V
o
l
u
m
e
 
f
r
a
c
t
i
o
n
 
o
f
 
t
h
e
 
P
E
O
 
c
h
a
i
n
s

Distance from the surface (Å)

0 40 80 120 160 200 240 280 320 360 400
0.00

0.05

0.10

0.15

0.20

0.25
(c)

σ=0.1 nm-2

V
o
l
u
m
e
 
f
r
a
c
t
i
o
n
 
o
f
 
t
h
e
 
P
E
O
 
c
h
a
i
n
s

Distance from the surface (Å)

Fig. 4. Volume fraction profiles of PEO chains for bimodal distributions. The solid curve describes the prediction of bnSCF model, the dashed-dotted curve

describes the prediction of nSCF model and the dashed curve the best fit to the experiment [24]. The bimodal systems studied contain chains with 700 and

150 monomers. The percentage of the short chains is 75. The FloryeHugins parameter (c) for the interaction between surface and polymer is �1 in both methods.

We present three cases with three different surface densities (s). (a) s¼ 0.2 nm�2, (b) s¼ 0.143 nm�2 and (c) s¼ 0.1 nm�2.
grafting point on the surface cannot follow an undisturbed
walk. In this case, the interaction with other chains is so strong
that the brush is described using the disturbed walk version.
The existence of three regions is supported by experimental
results [35].

As shown in Fig. 6 for the cases where the ratio is lower
than 2 the brush height is better described by the random
walk version. For ratio value equal to 1 we do not have any ex-
perimental results so we have compared the new method with
the old nSCF. It is shown that the rw versions of both nSCF
methods (block and traditional) start from the same point
(brush height) at low surface densities. Even when the ratio
is greater than 2 but close to that value the random walk devel-
opment is a better approach. When the ratio value is 2.2, the ex-
perimental data is almost the average value of the predictions of
the two block versions (black and white triangle). In this case,
the polymer chain is so long that even if a part of it is stretched
there is still an important part that is described by the random
walk development. The criterion for using the disturbed walk
version is that R is much larger than 2Rs. In situation where
the ratio is around 2, we should also consider the existence
or not of the depletion layer in the volume fraction profile.
The absence of such a layer is an indication of disturbed
walk. The appropriate choice for each ratio value is marked
with a gray circle. It is mentioned that we can always choose
an appropriate (lower) stiffness parameter for the (rw) bnSCF
version and describe the brush extension very well in all sur-
face densities as done with the old nSCF. Only in this case
we will observe even in high s the appearance of the depletion
layer near the surface (volume fraction profile).

If we try to transfer the disturbed walk in molecular
simulation we should have the following approach. First let us
assume that the interaction between two successive monomers
on a chain or between two non-successive monomers of any
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Fig. 5. Volume fraction profiles of PS chains as a function of the distance from

the interface for three bimodal systems. The dashed curve describes the exper-

imental result from NR, the dotted curve describes the prediction of nSCF

model and the solid curve the prediction of bnSCF model. The systems studied

are (a) 1634-634 monomers, s¼ 2� 10�2 chains/nm2, 62% short chains; (b)

3173-634 monomers, s¼ 1.88� 10�2 chains/nm2, 83% short chains; (c)

3173-288 monomers, s¼ 1.65� 10�2 chains/nm2, 75% short chains.
chain is done with the use of hard spheres. Then we should
consider different radius for each of the two different interac-
tions. We accept that bond interaction has a smaller radius as it
describes a stable bond. The hard sphere that occurs when the
chain tries to move across the wall that is made by neighbor
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Fig. 6. Plot of the layer height as a function of the ratio hR2i1=2=
ffiffiffiffiffiffiffiffiffiffiffi
1=ps

p
. We

study a system of monodisperse PS brush in various s and we compare the pre-

dictions for the brush height from the bnSCF in the disturbed walk version (black

triangles) and the random walk version (white triangles) with experimental re-

sults from NR (black circles) and theoretical results from previous nSCF method

(black squares). The number of monomers is 1634 and hR2i1=2 ¼ 181.10 Å. We

put in a gray circle the appropriate prediction (random or disturbed walk) for

each ratio value from the new method. For ratio equal to 1 we present data

only from the two theoretical methods because there was no experimental data.

Scheme 4. Schematic with the three characteristic of regions of polymers

grafted on surface. With R we present the end-to-end distance of a random

walk development. The distance between two grafting points is 2Rs. All the

possible conformations of a chain starting from a point on the surface and fol-

lowing a random walk development are described with a hemisphere of radius

R. When two hemispheres overlap we have a gray area. The overlapping of

three hemispheres is described with black. The three regions are the following:

(a) 2Rs> 2R, (b) R	 2Rs	 2R and (c) 2Rs< R.
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chains has a radius much bigger than the radius of a single
bond. The reason is that as the double bond brings the atoms
closer then it is reasonable to assume that the case of no
bond should refer to a longer interatomic distance than the sin-
gle bond. The result is that the chains at high concentrations
cannot easily penetrate the wall of neighbor chains and so
the chain has a difficulty to flatten parallel to surface and it
stretches perpendicular to it. In this way we can observe the
disappearance of the depletion layer.

By introducing the segment conformations inside the block,
we make possible the atomistic study of the polymer molecule.
The segment inside the block can be studied separately with
accurate methods such as Monte Carlo. For one or more seg-
ments in the same block the energy and the internal volume
fraction fluctuation could be defined using analytical poten-
tials. In this way the mean field approach would be applied
only for long distance interactions while a more detailed and
refined estimation of the total energy of each conformation
and the volume fraction profile could be achieved. Moreover
because of the very good behavior near the surface, the bnSCF
could be a powerful tool in order to study polymers very close
to the surface (adsorption).

5. Conclusions

In this work we have presented a new approach for the study
of polymer brushes through a revised nSCF method. The results
of the new numerical method are very satisfactory since they im-
prove the traditional numerical SCF method in the cases where
the old method failed to follow the experiment. In some cases we
have to introduce a new parameter that estimates the polymer
stiffness in a more satisfactory way. We have found better results
near the surface where we observe the disappearance of the de-
pletion layer. We have also succeeded very satisfactory estima-
tion of the brush extension as a function of the surface density.
This method is an improvement of the old nSCF, with all the ad-
vantages of the old nSCF method, which is practically closer to
a detailed atomistic approach without being as time consuming
as an atomistic method.
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